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Introduction

In this manual, you have been generally provided materials that have been instructed in Signals &
Systems and Probability & Random Process related to ECE489 syllabus. Section 1-4 is particularly
accumulated from the references ™ and ?! along with the communication courses taught at NJIT.
Section 5, namely Probability, is basically based on the references “/and !, For further information,
please see the references.

As a reminder, you have already been familiar to these concepts mentioned in ECE481. The aim of
this manual is to introduce the concepts along with the relevance and need for Fundamentals of
Communications as well as ECE489. If you feel weak in anything covered here, you must first start
studying the basics of ECE321 and ECE333 courses. If you still need a further assistance, please feel
free to contact with the instructor.

This manual is not a mandatory task for you; is more supplementary material. However, you will be
kept responsible to know the concepts covered here.

1. Classifications of Signals

|.  Deterministic vs. Random
A signal can be specified as deterministic if it is a specified function of time. As an example,
x(t) = cos(wt + 6)
1, t>0
u(t) = {0, t<0

Signals that can take any value with different probabilities with respect to time are defined as random
signals. These signals can be analyzed for their characteristics such as expected value, variance,
probability density function, etc. As an example, the normal distribution is given as

(x=p)?

e 20%
\/ 2mo2

X ~ N(p,09) =) =

Il.  Energy vs. Power
Energy of a signal x(t):

+ 00

E, = flx(t)lz dt (Joules)

Any signal with E, < +oo i.e. with finite energy, is called energy signal. As an example,

x(t) = {é i Z 8 x(t) = sinc(t), a speech signal in a finite length, etc.
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Power of a signal x(t):
o1
P, = Tllm T flx(t)lz dt (Watts)

Assignal 0 < P, < 4o, i.e., finite non-zero power, is a power signal. As an example, x(t) =
cos(wt + @), periodic pulse train, etc.
Note that:

E, <+4o00—-> P, =0

P,>0—-E, =+

(ex.: Periodic Rectangular Pulse Train)

[ll.  Real vs. Complex
A complex signal has the form

(1) z(t) = x(t) +jy(t), Cartesian Representation
Re{z(t)} = x(t)
Im{z(t)} = y(t), where x(t) and y(t) are real

(2) z(t) = |z(t)|e/®®,  Polar representation

|z(t)| and 6(t) are real

V. Continuous vs. Discrete

. . . x(t)
A continuous-time signal:

T

x(t)
A discrete-time signal is often obtained P
by sampling a continuous time signal: w\
Ty = sampling period i m .
of 121,
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V.  Periodic vs. Aperiodic
If x(t) is periodic, then
x(t) = x(t + nTy), forTy, # 0andV integersn
Some waveforms that you should always remember:
= The Unit Step Function: pult
1,t>0 1
u(t) = {0, t<0
0 >t
o(t)
= The Unit Impulse Function (delta function): 1
(0, t+0 ot _ A
o(t) = {Oo, f—o and [_é6@)dt=1 =
0 1
Recall:
- 17 (8t — to)dt = p(to)
0+
- [L8@®)dt=1
1
- 8(at) = m&(t)
- §(-)=6()
- x(®)8(t —to) = x(t)(t — to)
BGEIIGEE
i At 1 ©
= sinc(At) = SIn(AD gor A >0, E,=-
TAt A
=N i =
T4 a4 a4 Ta 4 A

for A > 1:"shrinking"—— less energy
for A < 1:"stretching"—— more energy
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—, t>0
A rectangular pulse, x(t) = {\/Tp ,
0,t<0

1

x(t) = cos(2nf.t),—o0o <t < 400, P, = EW
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x(8) 1

1] VTe

cosine (period)
A periodic pulse train, Ax(®)
T
Px == ? 1
T—1 T T+t !
For any periodic signal, T T
(period)
Pe="2,0<t<T
. alm one full

z(t) = eJ?™et = cos(2mf,t) + jsin(2nf,t) = circle
Re{z(t)} = cos(2nf.t) i > \\eivery
Im{z(t)} = sin(2nf.t) / Y &
lz()] =1 \ 6@ T Re
6(t) = 2uf.t |
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2. Signal Analysis

Signals can be analyzed as described below:

Signal Analysis

—» Frequency Domain Analysis
/ FT \4 / \4
Time Domain -~ * Frequency Domain ——— 1. Fourier Series 2. Fourier Transform
- (pericdic signals)  (energy signals)
IFT

l. Fourier Series

+ o0

j27tnt _j2n'1t j2n'1t
x(t)=2xne T " =--4+x_4e T +xq+x86 T -+
— 00
j2nn

Remark: e T ©

n
"oscillates" at frequency T

Therefore, we can represent the Fourier Series a periodic signal in the frequency domain as,

x?l
Xo X3
X_3 I °
X_q X1
AR
T T > H
3 2 1 0 1 2 3 flHz]
T T T T T T
Fourier Series Coefficients is calculated as,
1T _j27'mt
X, = —f x(t)e” T “dt, n=--,—-10.1,...
Ty

Parseval’s Theorem
Power can be calculated in time and frequency domains

1 (7 -
Po=7 [ w@Pde =Y sl
TJ, £
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Examples
1) x(t) = e/2mec® = cos(anC(t)) +jsin(27tfc(t)), periodicwith T = %

Fourier Series Coefficientswillbe x; = 1land x, =0 forVn # 1

xn
X1 = 1

2) x(t) = cos(2nf.(t)), periodic with T = ]é *n

Fourier Series Coefficients will be x; = % &x_4 = 1 1

%andxn:OforVn;til 1702 M2

Equivalently, T T

1 . 1 . =i o " T
cos(2nf.t) = = el2Met 4 —g=J2mfet 3. 2 1 1 2 3
2 2 T T T T T T

(Euler’s formula)

3) Pulse Train X
Ay
Periodic with period T
T .n _fﬂTnt 3
Xp = ?smc(?r)e n t
T
— Z [xo] -2
Lett = > then e A T x| T
[x_s] \ ‘ / T |SlI'1C(fT)|
e
3 2 1 1\ 2 3 ,f
% T = o

4) Parseval’s Theorem
For x(t) = cos(2nf,t),then the poweris P, = % = |x_1|2 + |x,]?

Page 7 of 18



ECE489
Review

[l. Fourier Transform

As it is defined above, Fourier series is valid for periodic signals, Fourier transform represents an
analysis of an energy signal as the continuous spectrum of frequencies.

XN
/N arg(X(f))
N
/// \\
// - \\1,_7
f N f
Fourier transform:
+0o0
X(F) = Fla(t)} = f x(t)e—I2n gt
Inverse Fourier Transform:
+0o0
X© =FHXD) = [ X e

Properties of the Fourier transform
1) If x(t) is real, then

X(f) = X*(—f), similarly
1X(ON = 1X(—=)I .. Hermitian Symmetry
arg(X(f)) = —arg(X(=f))

Ex.: Rectangular signal, |x(t)| sinc, x2, cosine, etc.
2) If x(t) isreal and even (i.e. x(t) = x(—t)), then

X(f) isreal and even (X(f) = X(—f)

Ex.: Sinc, rectangular signal centered at t=0
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If x(t) is real and odd (i.e. x(t) = —x(—t)), then

X(f) isreal and odd (i.e. X(f) = =X (—f))
EX.: sine, erf(x), etc.

Rayleigh Theorem,

Ey = 17 x@2de = [Z7IX(NI2df,

It is clearly seen that energy can be calculated both in time and frequency domains.

Delay,

Fix(t — 1)} = X(f)e /2T

Please note that a delay in time domain results in a linear phase shift in the frequency domain.
Frequency translation,

Flx()e 2t} = X(f - f.)

Please note that multiplying a function by e/2™/ct is called “upconversion” in communication
systems.

X(f) = P X(F-p)= T 1 R
g ! ol 1 1

1
ﬁ‘_z fC+E

|
|
M| =

Examples

1, 0<t<T, x(6)1

x(t) =

0, elswhere

XA
Tp T,

X(f) = J e~ 2nft gt = Tpsinc(pr)e—jntTp /\

3 2 1 | 1

T, T, Tp
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2)

1)

2)

x(t)
x(t) = Asinc(At) /‘\

0, elsewhere

A
X(f):{ Lifl <3 ]
A
2

[T

E,=A

. Correlation and Energy Spectrum

Correlation
Correlation function of a signal x(t),

R (7) = [*7 x(t)x*(t — T)dt
It measures the correlation between x(t) and x(t — 1)
Properties of correlation function

R.(0) = [*7|x(t)|?dt = E,

R, (t) = Rx(—1) ~ Hermitian Symmetry
IR, (t)| < R, (0) forT #0

Energy Spectrum
Energy spectrum of a signal x(t)

G, (f) = |X(t)|? (energy spectral density) [é]
It measures the energy of the signal at frequency f.

Ee = [72 G (Ndf = [TI1X(P)I2df

nlw ¥

ECE489
Review

Please note that the relationship between correlation and the energy spectrum density:

F{Rx (D)} = G (f)
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Examples
. A A?
1) x(t) = Asinc(t) = G, (f) =
E, = A? &
~f
-3 -
(1, 0<t<1 x(t) 4
2) x(t) = {O, elsewhere
0 1 Tt
+00
_ _ _(1—=|z|, for |t| <1
Rx(T) = f x()x(t —)dt = { 0, otherwise
e A
R, (7)
i E =1
-1 1 T
3) Fourier series as a Fourier transform
N 1 X(f) 1
X(f) = £ 52,8 (f = 2) 2 2
Let x(t) = cos(2mf,t), then I I -
_fc | fc ’f
4, LTI Systems
Physical systems are characterized by the input/output relations.
Input Signal LTI System Cutput Signal
——
x(t) h(t) y(t)

Impulse Response:hit)
Frequency Response:H(F)

Linear time-invariant (LT1) systems both satisfy the linearity and the time-invariance conditions [?I.
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Linearity
A linear system is one of in which superposition holds, i.e.,

ax,(t) + bx,(t) -» ay, + by,

Time-Invariance

A time-invariant system is one in which a time shift in the input only changes the output by time
a shift, i.e.,

x(t—1)-=>y(t—1)

- Intime domain: The output of the linear system is the convolution of the input signal with the
impulse response, i.e.,

+00

Y(©) = x(t) * h(t) = f x()dA

— 00

- Frequency Domain: The Fourier transform (or Laplace) of the impulse response is donated the
frequency response (transfer function), H(f) = F{h(t)} and by the convolution theorem for the
energy signals, we have

Y(f) = H(H)X()

An LTI system’s energy spectrum has the form

Gy(f) = HOOH ()G (f) = [H(OI? G (f) = Gu ()G (f)

Examples

1) h(t) =6(t) » H(f) =1, then

Y(f) = HHOX() = Y(F) = X(f), similarly y(t) = x(¢)

2)
a. An LTI system has the impulse response, is defined as

h(t) = 2sinc(2t), and the input x(t) = 4sinc(4t). Find the output of the system.

H(f)
1, —1<t<1 !

- HU) = {0, otherwise ’7“

- 1 . 1
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1, —2<t<?2 !
X(H) = {0, otherwise [ ]

= 2/

Y =HOXU
The output, 1 - y(t) = 2sinc(2t)

| | ]

-1 1
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b. Same filter as defined above, but the input x(t) = cos(4mt), find the output y(t).

X(f)={

0, otherwise

—%,%, for f = —=2,2 respectively I;

=2

Therefore, Y(f) = H(A))X(f) =0-y(t) =0

c. Now the inputis x(t) = cos(mt)

11
for f = —33 respectively

11
2’2’
0, otherwise

-]

Therefore, Y(f) = X(f) = y(t) = x(t) = cos(mt)

Finding Sampling Frequency of the Signals

Nyquist-Shannon Theorem: f; = Tl > 2xhighest frequency of X(f)

b=

r((f)

.
N f——p

N |—p
[S1E

In Matlab/Simulink, it is suggested that f; = Tl > 10x(2xhighest frequency of X(f))

5. Probability and Noise in Communication Systems

Why Probability?

Probability is the mathematical tool for communications theory. Consider a radio communication
system where the received signal is a random process in nature; message and interference are random
as well as delay, phase, fading, etc. ! Thus, the probability concept is crucial for communications

engineering.

|. Probability Concept
To refresh our memory, let’s start with an example.
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Consider a fair dice rolled once, the sample space for possible outcomes will be
Q= {1,2,3,4,5,6}

Assume that “A” is scenario that the outcome is greater and equal to 4, then the sample space of the
event A is

A = {456}
» The probability of A,

P(4) = total # of outcomesof A 3 0.5
B tatal # of Q 6

Let an event B is the even numbers selected, then

B ={2,4,6}
The probability of B,
3
P(B) = i 0.5
» The conditional probability is defined as
DA — P(ANB)
(A )—W
Therefore,
_ {46} 2
P(A|B) = 246 - 3~ 0.667

» The complement of the event B is the odd outcomes,
A° ={1,3,5}
» The total probability law is expressed as
P(A) = P(B)P(A|B) + P(B°)P(A|B°)

» Three conditions must be satisfied to understand the random events that characterize
communication systems performance “!:
e ForanyeventA P(A) >0
° P(Q) =1
e If Aand B are mutually exclusive events, then P(AU B) = P(A) + P(B)

» Bayes Rule is expressed as
P(A|B)P(B)

P(B|A) = PCA)

When a signal transmitted through a communication channel, there are two types of imperfections
that cause the received signal to be different from the transmitted signal, namely;
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i.  Deterministic in nature, such as linear and nonlinear distortions, inter-symbol-interference (ISI),
etc.
ii. Nondeterministic, such as addition of noise, interference, multipath fading, etc.

For these nondeterministic phenomena, a random model is required !,

Il.  Random Variables
A random variable is a mapping function whose domain is a sample space and whose range is some
set of real numbers [©;

X=X

A Real number value

Probability of specific event is expressed as
P(""eQ:X() <x) - PX<Xx)

Random variables are studied in two forms, namely, discrete and continuous. However, you have
already seen their properties in other courses. Therefore, we will just introduce the probability mass
functions (PMF) (discrete) and density functions (PDF) (continuous) of some distributions.

Mean and Variance

Mean (or Expected Value) is also called DC level is expressed as:

+ 00

EXl=p = | afodx

— 00

Variance (power for zero mean signals):

oy = E[X — piy] = f (x — ) fe()dx = E[X?] — i3
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Uniform
1
= = Jx(x)
PMF: p (k) = {n' k=1..,m R
0, otherwise 1]
(b-a)
1 <x<bh
PDF: flx) = {b—a’ a=xr= .y
0, otherwise da b
£ — a+b
X 2
,  (b—a)?
ofx =————
2
Gaussian
1 _1(u)2
PDF: f(x):me 2\o /] for —co < x < +o0
fX (x)
m = E[X]
zer = g2 / \\
e}
o : standard deviation - ~—
0 m

[ll.  Noise in Communication Systems
Noise is the undesired waves that disturb the transmission of signals. Basically, the sources of noise
are: external (atmospheric, interference, etc.) and internal (generated by the communication devices,
i.e. electron’s randomly fluctuations, etc.).

Channel
s(t) ¥(t)=s(t)+Mit)

Mit)
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White Noise

White Noise (WN) has zero mean, stationary, and occupies all frequencies. The power spectrum
density of WN is:
A Sp(T)
Ny
SN(f)=7' — o< f <400

N;:,.I"E

Gaussian Noise
Gaussian Noise (GN) is the distribution at any instant is Gaussian. GN can be colored.

Sx(x)

S

0 m

Typically, the noise is Additive White Gaussian (AWGN) in communication systems.

Note that the WN is constant over an infinite bandwidth that does not mean Gaussian waveform. In
addition, the GN can be colored.

During the ECE489, you will quite often use AWGN channel in the simulations.
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